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1 MEASURING VEGETATION LOSS WITH SATELLITE IMAGES 

This study uses satellite imagery to analyse the impact of companies on vegetation. As a 
starting point, we retrieve the satellite images around the location of these companies’ 
physical assets. We then use these images to compute the Enhanced Vegetation Index (EVI), 
which is an image-based measure for vegetation density. By comparing the EVI scores at two 
different periods, and also across different locations, we provide a first-step methodology to 
assess the impact of businesses on nature, either negative or positive. 

Satellite images - also that date back to the 1980s - have become widely available. The 
advancement of remote sensing and Geographic Information System (GIS) technology allows 
to monitor the changes in land use and cover at the global, continental, and national level, for 
both their spatial, temporal, and spectral characteristics [1]. In the last decades, researchers 
started using satellite images to track the evolution of forests, and more broadly vegetation. 
For example, [2] use satellite images to show that, between 2000 and 2012, Earth lost around 
2.3 million km² of forests, and gained barely 0.8 million km².6 In this paper we build upon the 
techniques used in this literature and use satellite images to compute an index for vegetation 
density and link it to companies’ activities. 

1.1 SATELLITE IMAGES 

The database for satellite images we rely on is called Landsat 5, which has daily images at 
30-meter resolution over 1984-2012. We retrieve historical satellite images of selected 
locations using Google Earth Engine (GEE). GEE is a free service for non-commercial use and 
it is easy to integrate into Python or JavaScript code [3]. GEE provides a large catalogue of 
satellite images and geospatial datasets with planetary-scale analysis capabilities. In 
particular, we use pictures from a satellite-image database called Landsat 5, which provides 
extensive and accurate data on Earth's land surface for nearly three decades (March 1984 – 
May 2012), the longest-operating Earth observation satellite [4]. Landsat allows us to study 
locations around business activities far back in time, which is key considering that companies 
made large use of natural resources already in the 1980s [5]. While Landsat has the advantage 
of providing this historical perspective, it has the drawback that the resolution is at “only” 30 
meters, which is not as high as the newest databases such as Sentinel 2 [7]. However, a 30-
meter resolution is sufficient to build the vegetation index we use in this study. 

Image processing includes filtering, cloud mask and reducing. Our goal is to have a 
representative image of a location before and after the physical asset, e.g. a mine, was built. 
Given the different atmospheric conditions and seasonality, we need to apply a disaggregating 
3-step process, represented in Figure 1. The final output is a composite, single image that is 
created by combining multiple images within a time window of the same area. 

 

 

 

 

 

 

 
6 This and other databases allowed the creation of open-source web applications to monitor global forests in real-

time, such as Global Forest Watch (GFW). 

https://www.globalforestwatch.org/
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Figure 1: Filtering and Reducing Satellite Images 

 

Notes. This figure reports a representation of the process of (i) filtering satellite images, (ii) reducing them by applying a cloud-
mask algorithm from Google Earth Engine called SimpleLandsatCloudScore. The input is a set of images from a time window 
and the output is a single, reduced image, representative of the time window considered. 

 

1.1.1 Filtering 

We define a circular area with a radius of 3 kilometres around the physical asset of interest. 
The starting point is defining a circular area of interest around the coordinates of the 
company’s physical asset, such as a mining site for an extraction company. As radius for this 
circle area we chose 3 kilometres, which is sufficient to observe the status of vegetation 
around a large mining site.7  

We use image reduction to obtain 2 images, one before and one after the physical asset was 
built. We then collect the images available in Landsat 5 for each time window - so called image 
collection. The extent of the time window depends on the exercise we run. In most of the 
analysis, we aim to observe what happens before and after a determined physical asset is 
built. We thus retrieve all images in, respectively, the 3 years before the asset was built and the 
last three years of the period covered by Landsat 2 (2009-2012). 

1.1.2 Cloud Mask and Reducing 

The reduction process uses a cloud mask to minimize the presence of clouds . Clouds can 
obscure the satellite view of the ground and make it difficult to see what is happening in some 
areas. To address this issue, we use a processing method called cloud mask, which identifies 
and separates clouds in satellite images. Specifically, we consider the set of images of the 
same area we have in our filtered collections. We then apply the SimpleLandsatCloudScore 
algorithm - a pre-built algorithm provided by GEE - which assigns a cloud score to each pixel 
of each image in the collection.8 The algorithm then proceeds with a reducing process by 
selecting the lowest possible range of cloud scores at each point and takes the pixel with the 
median values across these scores. 

 
7 There is no standard to pick the area’s radius, and 3 kilometers is just an example. Since each image has a 30m 

resolution, we could not take any area smaller than 30 meters, otherwise no details would be detectable. In future 

work, we will automatize the selection of this parameter considering the perimeter of mining sites. 

8 For more details on the algorithm, see here: https://developers.google.com/earth-engine/apidocs/ee-

algorithms-landsat-simplecomposite.  

https://developers.google.com/earth-engine/apidocs/ee-algorithms-landsat-simplecomposite
https://developers.google.com/earth-engine/apidocs/ee-algorithms-landsat-simplecomposite
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The final composite image is composed of several bands, which are separate channels of 
image data. For the scope of our analysis, we are interested in the Red (R), Green (G), Blue (B), 
and near-infrared (NIR) bands. The first three represent the intensity of one of the primary 
colours of light, i.e., red, green, or blue, while the infrared channel captures wavelengths that 
are longer than those of visible light and are not visible to the human eye. Combining these 
channels in different proportions makes it possible to produce a wide range of colours. For 
instance, an RGB image is a close representation of what a human eye would see.  

1.2 VEGETATION INDEXES 

The most widely used vegetation index is the Normalized Difference Vegetation Index (NDVI). 
We use the bands in the composite images to build an index that measures the density of 
vegetation. The most widely used index in the literature is the Normalized Difference 
Vegetation Index (NDVI) (e.g. [7]). The NDVI was developed in the 1970s and uses the amounts 
of light in the infra-red and red bands reflected by the vegetation and captured by the satellite. 
Specifically, the NDVI is calculated at the pixel level from the infra-red and red reflectance 
values as follows: 

𝑁𝐷𝑉𝐼 =  
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝑅
 

(1) 

  

The leaf’s mesophyll scatters near-infrared light, while the chlorophyll absorbs red light. The 
NDVI uses the reflectance values to grasp the process of photosynthesis. The mesophyll leaf 
structure scatters near-infrared light, while the chlorophyll absorbs red light [8]. So the higher 
the difference between NIR and R light, the higher is the photosynthesis in the considered pixel, 
and denser is the vegetation. The NDVI values for a particular pixel range from -1 to +1, with 
negative values indicating the absence of green foliage and values close to +1 indicating 
denser and healthier vegetation [9]. 

As the NDVI is sensitive to changes in natural habitats unrelated to vegetation, we consider 
the corrected Enhanced Vegetation Index (EVI). While the NDVI is widely used because of its 
simplicity, and ability to recognize vegetated areas from other surface types [10], it presents 
some issues, such as reflectance problems with thick clouds and wet soils.9 The literature has 
proposed alternative indexes that take care of some of these issues, such as the Soil-Adjusted 
Vegetation Index (SAVI) [14], the Atmospherically Resistant Vegetation Index (ARVI) [15], and 
the Enhanced Vegetation Index (EVI) [14].10 For our analysis we rely on the EVI, which is a 
vegetation index developed by NASA in the early 2000s as an improvement over the NDVI. 
Since the launch of the Moderate-resolution Imaging Spectroradiometer (MODIS), NASA 
adopted the EVI as the new standard to assess vegetation. Like the NDVI, the EVI is calculated 
at the pixel level using the difference between the near-infrared and red wavelengths of light 

 
9 First, the NDVI is affected by the amount of light scattered in the atmosphere, which is more significant in the R 

region than in the NIR region. This means that NDVI values calculated using data recorded at the top of the 

atmosphere are generally lower than those calculated using surface reflectance [11]. Second, while thick clouds 

can be easily excluded, thin or small clouds smaller than the area considered by the satellite sensors can 

significantly impact the NDVI measurements. Additionally, cloud shadows can affect NDVI values and lead to 

misinterpretations [12]. Finally, when the soil becomes wet, it tends to darken in color. This happens because 

when the moisture levels of the soil in an area change due to rain or evaporation, the soil absorbs more light in 

different parts of the spectrum. As a result, the NDVI can change, while the vegetation density remains the same 

[13]. 

10 These limitations can be addressed by forming composite images from temporal data. The technique minimizes 

the impact of clouds, reduces the effects of reflected light and oblique viewing angles, and minimizes the effects 

of aerosols and water vapor on the measurements [16]. 
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reflected by plants, but it includes additional adjustments to account for atmospheric effects 
and the influence of soil background. Precisely, the EVI is computed in the following way [4]: 

𝐸𝑉𝐼 = 𝐺 ×
𝑁𝐼𝑅 − 𝑅

𝑁𝐼𝑅 + 𝐶1𝑅 − 𝐶2𝐵 + 𝐿
 

 

(2) 

NIR, R, and B are the full (or partially), atmospheric corrected surface reflectance for, 
respectively, near-infrared, red and blue. L is the canopy background adjustment for correcting 
the nonlinear, differential NIR and R radiant transfer through a canopy. C1 and C2 are the 
coefficients of the aerosol resistance term (which uses the blue band to correct for aerosol 
influences in the red band). G is a gain or scaling factor. The coefficients adopted for the 
MODIS EVI algorithm are L = 1, C1 = 6, C2 = 7.5 and G = 2.5 [17].  

The EVI ranges from -1 to 1, with positive values indicating the presence of vegetation - 
healthy tropical forests have values around 0.7. Like the NDVI, the EVI ranges from -1 to 1. 
The literature reports that peak EVI values for deserts (no vegetation), savanna biomes (some 
vegetation) and tropical forests (lots of vegetation) are, respectively, 0.1, 0.4 and 0.7 [14], and 
that healthy vegetation is usually between 0.5 and 0.8 EVI points [18]. However, as EVI values 
can vary largely between different natural habitats and vegetation types, the thresholds for 
what we can call “healthy vegetation” might vary significantly across locations.  

In our analysis, we compute the EVI for each pixel of the selected composite images. We finally 
obtain an image-level EVI by averaging the EVI values for all pixels in the image. 

2 CHECKS FOR ANTAMINA 

This section reports the robustness checks for the EVI values for the Antamina site, reported 
in the white paper in Table 1. Here, table 1 reports the results, both for the baseline (first 
columns) and the performed checks (other columns). 

Figure 2 shows the evolution of the EVI index over time between the Antamina location and 
the control location. For this control location to be a “good” control, there must be no major 
differences in the trends of the EVI before and after the mine was built. To visualize this, we 
compute the yearly EVI by reducing satellite images for each year, and we plot the time series 
in Figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 



7 
 

 

Figure 2: Enhanced Vegetation Index - Trends in the Antamina and Control Locations 

 

Notes. This figure reports yearly values for the EVI index for both the Antamina location (blue), and a control location (red) of 
similar altitude that is 7.1 kilometres away from the Antamina location. The yearly values are obtained by compressing all 
images from the same season available in each considered year. As we do not have many satellite images for 2002, the value 
for 2002 is interpolated with an average of values in 2001 and 2003. 

 

The red line is the yearly time series of the EVI in the Antamina location, while the blue line is 
the yearly time series of the EVI in the control location.11 From the red line we can see that the 
vegetation in the Antamina location started declining in 1998, which is when the consortium 
of companies started the drilling operations. On the other hand, the blue line shows that 
vegetation in the control location remained approximately constant throughout the considered 
period.12 This anecdotal evidence suggests that the control we are using could be considered 
a good control, as the only difference in the trends appear to be around the construction of the 
mine. 

Table 1 reports the robustness checks for the Antamina and control locations . The table 
shows that result can change when we vary the parameters of our methodology. First, a 
reduction in the considered area’s radius from 3 to 2 kilometres produces a larger adjusted 
change in the EVI value (-0.1046 in column 2). This is intuitive as, likely, the captured area 
focuses more on the location of the extraction site per se and thus excludes surrounding 
vegetation that survived. Second, an increase in the considered area’s radius from 3 to 4 
kilometres produces a smaller adjusted change in the EVI value (-0.0725 in column 3).  The 
same logic holds here, as the larger the area around the mine, the more untouched vegetation 
is included, and therefore the milder is the reduction in the EVI. In future work, we will work to 

 
11 In the figure we do not report the year 2002, which has very few satellite images available for these locations. 

The resulting EVI is imprecise and not indicative. 

12 The yearly bumps are mainly due to the availability of images by year. When the availability is low, the resulting 

EVI can be imprecise. While Figure 4 is useful for representation purposes, in our baseline comparison we do not 

consider yearly values, but we focus on before and after values, computed as explained before. 
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include the area interested in the mining activities by relying on official land-ownership data, 
or image-recognition techniques. 

Table 1: Robustness Checks for Adjusted Differences in EVI for Antamina 

 

Notes. Columns 1 reports the baseline figures. Columns 2 and 3 report the figures obtained by changing the radius of the area 
of interest from 3 km to, respectively, 2 km and 4 km.  Column 4 shows the results when we change the window used to 
compute the EVI value for before the mine was built from a time window just before the mine was built (1994-97) to a time 
window at the beginning of our dataset (1984-87). Columns 5 and 6 report the results as we change the time windows to obtain 
the EVI values from 3-year spans (1994-97 and 2009-12) to, respectively, 2-year spans (1995-1997 and 2010-2012) and 4-year 
spans (1993-97 and 2008-12). 

 

Third, column 4 shows what happens when we change the time window to obtain the image 
representative of the area before the mine was built. If we move this window from just before 
the mine was built (1994-97, baseline) to the first available period in the dataset (1984-87), the 
negative adjusted EVI change is larger (-0.1024). This is also intuitive, as moving the window 
at the beginning of the dataset implies including in the estimate any natural vegetation loss 
happened before the mine was built. This motivates further our choice of using a time window 
that just precedes the construction of the mine in our baseline. In future work, we will work to 
obtain the construction date of mining sites, so we can address this degree of error for 
company-level results. 

Finally, in columns 5 and 6 we show what happens when the change the length of the time 
windows used to compute the respective composite satellite images. Specifically, columns 5 
and 6 report the figures and adjusted EVI change for 2-year windows (1995-97 and 2010-12) 
and 4-year windows (1993-97 and 2008-12). Results change mainly because of changes in the 
control location for the 2-year window, which can be quite sensitive as there can be few 
available satellite images in that more limited time frame. On the other hand, 4-year windows’ 
results are more aligned with the baseline. 

3 SUPPLEMENTARY IMAGES FOR THE INSTITUTO TERRA 

Here we report added images for the Instituto Terra. Figure 3 reports the infrared composite 
images for the circular area of radius of 3 km that we consider around the reforestation project 
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of the Instituto Terra. Red pixels stand for near-infrared light and vegetation, while grey and 
green and darker pixels indicate an absence of vegetation. 

Figure 3: Instituto Terra - Infrared Composite Images 

(a) 1997-2000 (b) 2009-2012 

  

Notes. This figure reports the infrared composite images for the site of the Instituto Terra before and after the site was built 
(3-km radius). The first image was obtained by compressing all images available in the window 1997-2000. The compression 
minimized the presence of clouds. The same procedure was applied to obtain the second image over the window 2009-2012 
(end of the dataset). Red pixels stand for near-infrared light and vegetation, while gray and green pixels indicate an absence of 
vegetation. 

 

If we move from before (Panel a) to after (Panel b) the reforestation project, we see that darker 
pixels (absence of vegetation) leave space to red pixels (presence of vegetation). We use 
these images to build the EVI values reported in the paper. 

4 IMAGES AND FIGURES FOR FOUNTAIN WILDFIRE 

Nature-positive projects are more difficult to analyse, especially when reforestation is done 
in the aftermath of a wildfire. While the nature-negative companies and assets are more alike 
- i.e. an extraction site that damages vegetation -, nature-positive initiatives and their 
characteristics are more heterogeneous. As a result, the choice of the time window to collect 
the images before the reforestation and the control location might depend significantly on the 
specific characteristics of the reforestation in question. In the case of a wildfire, the first 
considered time window moves to just after the event (rather than just before), and the time 
spread of the window we consider for the analysis must be fairly short to avoid capturing the 
beginning of the reforesting process. In addition, as a control location we would need an area 
that was destroyed by the fire and that was not restored. As in many cases the reforestation 
project restored the entirety of the site, it is not possible to find such control. One approach 
can thus be to consider a location destroyed by another wildfire that was not restored, with the 
caveat that this other location might have very different characteristics.  

The Fountain wildfire. To document this aspect, we consider the reforestation project in the 
aftermath of the Fountain wildfire, a large and destructive wildfire that happened in 1992 in 
California [19]. Figure 4 shows the infrared composite images for these two windows: 
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Figure 4: Fountain Wildfire - Infrared Composite Images 

(a) 1992-1993 (b) 2009-2012 

  

Notes. This figure reports the infrared composite images for the site of the Fountain wildfire just after the wildfire took place 
and afther the reforestation (3-km radius). The first image was obtained by compressing all images available in the window 
1992-1993. The compression minimized the presence of clouds. The same procedure was applied to obtain the second image 
over the window 2009-2012 (end of the dataset). Red pixels stand for near-infrared light and vegetation, while gray and green 
pixels indicate an absence of vegetation. 

 

The difference is clear, as we move from an absence of vegetation in Panel (a) to a full 
reforestation in Panel (b). We then use these images to compute the EVI values, as it is 
reported in Figure 5: 

Figure 5: Fountain Wildfire - Changes in the Enhanced Vegetation Index 

(a) 1992-1993         (b) 2009-2012 
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Notes. This figure reports the values at the pixel level for the Enhanced Vegetation Index in images of the area of the site of 
the Fountain wildfire just after the fire took place (panel a) and after the reforestation (panel b) (3-km radius). Darker pixels are 
for positive EVI values (presence of vegetation), while clearer pixels are for negative EVI values (absence of vegetation). 

 

The EVI reflects the reforestation process, as it moves from 0.118 just after the wildfire to 
0.438 at the end of the reforestation process. This increase corresponds to a 271% increase, 
as it’s reported in Column 1 of Table 2. 

Table 2: Adjusted Difference in Enhanced Vegetation Index for Fountain Wildfire 

 

Notes. Columns 1 reports the baseline figures. Columns 2 and 3 report the figures obtained by changing the radius of the area 
of interest from 3 km to, respectively, 2 km and 4 km.  Column 4 shows the results when we change the window used to 
compute the EVI value for before the mine was built from a time window just before the mine was built (1994-97) to a time 
window at the beginning of our dataset (1984-87). Columns 5 and 6 report the results as we change the time windows to obtain 
the EVI values from 3-year spans (1994-97 and 2009-12) to, respectively, 2-year spans (1995-1997 and 2010-2012) and 4-year 
spans (1993-97 and 2008-12). 

 

Table 2 also shows the comparison with a control location. In the case of wildfires, the control 
location would need to be an area that was destroyed by the wildfire (as our area of interest), 
but that was not reforested. In the case of the Fountain wildfire, all the areas affected by the 
fire were reforested, and therefore we do not dispose of a control location “nearby” our area 
of interest – as we did for the cases of Antamina and Instituto Terra. One way to address this 
challenge is picking a non-adjacent area that was affected by another wildfire, and that was 
never restored. Here we run this exercise by picking as control one area affected by the 
Hayman site, Colorado, which was completely burned down in 2002 and never restored.13 
Column 2 reports the evolution of the EVI for this location. In this case, we have used 3-year 
windows for both beginning (just after the wildfire happened) and end period, as no 
reforestation took place. In this control location the EVI presents a “slight” increase from 
0.1254 to 0.1497 (19%), which is probably due to the natural reforestation taking place in the 
aftermath of wildfires. Applying the usual logic, we can then correct the change in the Fountain 
area with this naturally induced increase in vegetation in the Hayman site.  The adjusted 
change for the Fountain site amounts to 0.2961 EVI points (rather than 0.3204). 

This example shows one approach to address the absence of a control location in the context 
of wildfires. The important caveat here is that we are comparing potentially different plots of 

 
13 The latitude and longitude coordinates are, respectively, 39.272829 and -105.252479. 
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lands, with very different characteristics and type of vegetation. This is why, in the ideal case, 
it would be better to have an area affected by the same wildfire that was not restored. 

5 INSTITUTO TERRA: FINANCIAL REPORTS 

In this section we report the information we gathered from the financial reports of the Instituto 
Terra. All reports are available at this link: https://institutoterra.org/relatorio-financeiro/. Table 
3 summarizes all the figures, both in the original Reais currency (Panel a) and in US Dollars 
(Panel b). 

Table 3: Instituto Terra – Financial Reports 

Panel (a) 

 

Panel (b) 

 

Notes. This table reports information from the financial statements of the Instituto Terra during the time we consider for our 
analysis, i.e. 2001-2012. Panel (a) reports the original figures in Brazilian Reais. Panel (b) reports the figures in US Dollars, 
converted with an exchange rate of 0.19 (from 10.02.2023). More information can be found here: 
https://institutoterra.org/relatorio-financeiro/.  

 

Our goal here is to track the amount of money that was used to finance the restoration project 
of the Instituto Terra, during the period of analysis. As we observe changes from the start of 
the operations in 2001 to the end of our dataset in 2012, we consider financial figures over 
2001-2012. The Instituto Terra works as a foundation, i.e. it receives funds from donors and it 

https://institutoterra.org/relatorio-financeiro/
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uses them to finance the reforestation of the rain forest in the area of operations. Aside from 
this core activity, the Instituto Terra runs a series of auxiliary activities, such as education.14 

The financial reports of the Instituto Terra provide the split between operating expenses, 
administrative expenses, depreciation, financial and other expenses. The split for reforestation 
expenses is included within operating expenses from 2005 onwards and varies between US$ 
56,000 in 2008 to US$ 265,000 in 2012. The overall amount of expenses is reported in the last 
line of Table 3, with a cumulated amount for the period of US$5.3 million. 

We use these figures as an estimate of how much it comprehensively costs to restore and 
preserve the amount of vegetation restored by the Instituto Terra, and therefore the amount of 
vegetation damaged by the Antamina mining site. We argue that the best approach is to 
consider the overall expenses of the Instituto, rather than only the expenses dedicated to 
reforestation. The main reason being that all the auxiliary expenses are fundamental for the 
centre’s existence, which depends on the work of its employees and other activities such as 
education. We thus use the figure of US$ 5.3 million as our baseline estimates for the 
comprehensive costs of reforestation, and therefore the proportioned cost for the vegetation 
loss produced by the Antamina mine, as explained in the white paper. As an alternative, we 
could consider different cuts of operating expenses of the Instituto. 

This example shows how we could independently gather financial information from 
restoration projects and use it to estimate the cost of vegetation loss. In future work, we will 
gather a sample of projects, including their financial reports, and compute averages of 
operating expenses within this sample, with the goal to obtain estimates that do not depend 
on a single case. 
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